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DIFFUSION IN THE BOUNDARY LAYER ON A PLATE WITH 
INHOMOGENEOUS CHEMICAL PROPERTIES* 

E.M. PODGAETSKII 

Stationary convective diffusion of a substance dissolved in a viscous incompres- 

sible fluid in laminar flow over a flat plate is considered. Anirreversiblechemical 
transformation of the substance takes place at the plate face. The reactionkinetics 

are nonlinear and its constant rate depends on temperature. The reaction thermal 
effect iS taken into account. The Reynolds, P&let, and the thermal Prandtlnumbers 
are assumed large, thus ensuring the presence of respective boundary layers on the 
plate. The problem is reduced to a nonlinear integral equation. An analog of 
similar flow in a round pipe is formulated. Solution of these equations is derived 

by the method of iteration. Exact lower and upper estimates of the problem solu- 
tion are obtained. Conditions under which the concentration of substance on the 
surface diminishes as the distance from the plate leading edge increases areobtained. 

Numerical calculation results are adduced. 

Neglecting the heat transfer in the plate, we obtain the known (e.g., /l/j equations and 

boundary conditions 

D d% -,d"+"ac 
v-- a+ ay 

y-rm, c-rc,; z=o. Y#C, c=c, 
y = 0, D (~c/~y) = kF (c), k = k (T) 

.d’Tzuar.Luar 
ay* a~ ’ ay 

Y-PC-, T-+T,; z=O,y#O, T= T, 

Y = 0, -a (away) = f_p (way) 

(1) 

(2) 

where 3 and y are Cartesian coordinates along and across the plate, u and u velocity compon- 

ents of fluid along axes + and y, respectively, c is the concentration of dissolved substance, 

T is the fluid temperature, D,a,X are, the diffusion, thermal diffusivity, and heat conduct- 

ivity coefficients, respectively, kF(c) is the reaction rate, k is the constant of reaction 

rate dependent on temperature, and Q is the reaction thermal effect. 

We assume the coefficient of the fluid kinematic viscosity v to be independent of temper- 

ature, and the hydrodynamic problem of determining II and vto be separate from the diffusion 

and thermal problems. Formulas (1) and (2) are closed by specifying u and U. Systems (1) 

and (2) are related by the boundary conditions at the plate surface. We shall seek the solu- 

tion in the class of continuous functions. 

Let us, first, consider the case when the plate surface is isothermic (in terms of form- 

ula (2) this condition is satisfied when Q= 0, although in practice it can be achieved also 

when Q#O by feeding or extracting heat), and value of k is a specified function of z 

Y = 0, T = const, k = x (z) (3) 

Actually, the dependence of k on 2 is not a priori known and is determined in the 

course of solution in the form k= k[T(z)l. However, some of the problems reduce, as shown 

below, to problem (l), (3), whether their formulation is approximate, or sometimes, an exact 

one. 
Everywhere below we assume that PrV*sl(Pr= v/D is the Prandtl number),. i.e. that the 

diffusion in boundary layer is considerably thinner than the hydrodynamic. Problem (l),(3) was 

solvedanalytically,whenitwaspossibleto restrict the series in Y for u and v to the first terms /2 
3/,andwhen F(c)=c for x (2) = const , while for.F(c)= c"(n= 2 and 0.5), numerically/4/. The ana- 

log of problem (l), (3) forsmoothparticleswhen x(z) = const, usuallyatlargePCcletnumbers, was 

investigatedin anumberofpublications (e.g., /5/). Alsoknown aresolutionsin special cases of 
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x (2) $5 const (in /2/ for x = 0 in the band adjoining the plate leading edge, and downstream of 

that band when x=oD, and in /6/ for staggered bands). 
Taking for u and v asymptotic expressions as y-0 in the Balsius problem /2/, from (l), 

(3), proceeding as in /4/, we obtain the integral equation 

where (r(z) isthegamma function and U,, is the oncoming stress velocity, 
For the flaw in a tube of radius ~0 in a similar formulation we again obtain Eq.(4) in 

which 
1= w,(u&t"'Z. b = $I* [(12]“T (jis) @I?)-~, R (t) .= x [z It)] (5) 

Assuming that functions xirft)]. i*rsdRfdf are continuous fox t>@, and &We for O<t<CC,, 

with conditions P(O)=O.dF/~c~O,O<c~C, and constraint dR/$t>O,t>Ct, it is possible to prove 
the inequality 

dC/df < 0. t > 0 (6) 

Using Eq.(4) and inequality 161, we obtain the exact estimates 

We derive the solution af Eq.f4f by the method of iteration /7/, taking c,,CI as the 
input estimates 

C,, =max (Cp+1). A['&])' Cpkcl = min (Cu(.+ *tC& k=l,2,... (8) 

Proceeding as in f71, we can prove the inequalities 

C*i_*$ <c,i* c2;_l), C*(+l* L = f, 2s. . .: C,j <C < C*,+1, f=O,f, I. 1 

and the convergence of C,, to C as n-m. Any continuous functions that satisfy the condi- 
tion Q<C,<C< C,SC, can be taken for CO and Ct. For instance, we can use the inequality 

ili,ZPfC,) ,<L c,zqc:, 

where jar is a local diffusion stream flowing on the plate under condition of total absorp- 
tion J2/. The dimensionless functions Q and @, and the variable x are defined by conditions 

x tz (01 F (r) = x&q (I) @ (C,), z = (bx,)“% 

We, then, obtain the moxe precise upper bound C: of the solution of Eq.(4) 

where C, is defined in the last case by the equat.i.on 
ingful, i.e. lbwer than CL onLy for fairly large Z. 

P(C,IC,) = 1. Estimate C,' becomes mean- 

since 
It is expedient to t&e at the n-th step C,*=(C,+CX_,)/2, as the approximate solution 
then the relative error is defined by the quantity 

, 

The estimate C,(t) for HC (t)=cconst 
& = I C, - Cn_tl /(2min(G, C,_&. 

is the same as the approximate solution of Eq.(4) ob- 
tained in /4/ by tie method af uniformly accessible surface. 

Let us consider, as an example, the case in which variability of the constant is due to 
its dependence on temperature in conformity with the Arrenhius law 

k = ka exp I--E/(R,?“J], ke = utnst (9) 

Let us now consider the case of viscous fluids for which Pr;'*+i,Pry.=v/a when it is 
possible to derive from Eqs. (1) and (2) the relation between c and Tat the iurface 
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If the reaction is endothermic, i.e. 

with allowance for relation (10) yields 
Q<O, then the subsitution of (9) Into Eq.(41 

C = A [C, R,, 'f'l 

Y(C)= F (C) exp ge 
I- c/c, 

I 

E 
i+E(i-c/C_) 1 p=R,T,’ R, (I) = kg-8 t-‘1’ 

(II! 

with condition 

dvldC>O, O<C<C, 

satisfied. 
(12) 

When the reaction is exothermic, i.e. Q> 0. 
for T (t)> 

we first find the approximate expression 
taking into account that under usual conditions E< i /4/. In that case 

T (t) z TX = T, (1 + E - eC%,) (13) 

C” = A [C”, R,, FI (14) 

Substituting (8) into Eq.(4) with allowance for (13), for the approximate determination 
we have 

C = A [C, &, Fl, R,(t) = R,(t) exptg (I-TWIT,)1 (15) 

Since dR,ldt > 0, hence from inequality (6) it follows in conformity to Eq. (14) that dC”/dt< 

0, i.e. with allowance for (13) we have dT,ldt>O. Consequently 

dR,ldt > 0 (16) 

Thus problem (l), (2), (8) reduces in the case of exact formulation with e<O toproblem 

(l), (3) in the particular case of x(z)~const with the substitution of q(C) for F(C), and 
in the case of approximate formulation with e>O, but E& i, and with 

T-/T,)1 

x (I) = k,e-gexp Ig (1 - 
it reduces to the same problem. By virtue of conditions (12) and (16) and of inequal- 

ities dR,ldt>O, dF/dC>O it is possible to apply to Eqs. (ll), (15), and (14) the respective 

estimates (7) and method (8). 

The dependence of C,=CjC, and ir=jlj, on z is shown in Fig. 

1 by solid and dash lines, respectively in the case of F(C) = cs 
and g= 50. The error of computation with an accuracy to Cz* and 

z<1 did not exceed 0.06 for curve I@= O,C, -z), and 0.1 for 
curves 2 and 3 (E = 0.05 and -O.O5,C, -2). The small circles cor- 
respond to numerical solution of Eq.(4) obtained in /4/ with E- @. 

According to these data the discrepancy in the case of curve 1 
(C, -2) does not exceed O.O05(z < i). 

The author thanks E.M. Landis and V.S. Krylov for consulta- 

tions and discussion. 
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